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Abstract
In the framework of perturbation theory the reality of the perturbed eigenvalues
of a class of PT symmetric Hamiltonians is proved using stability techniques.
We apply this method to PT symmetric unperturbed Hamiltonians perturbed
by PT symmetric additional interactions.

PACS numbers: 03.65.−w, 03.65.Ca, 03.65.Ge, 03.65.Nk

1. Introduction

Perturbation theory has played a very important role in the past [1] in the study of non-
Hermitian Hamiltonians with PT symmetry [2]. In [3–5] it was applied starting from a
self-adjoint Hamiltonian in order to investigate the perturbation of its spectrum by a PT
symmetric interaction. In the present paper we try to present more general results concerning
in general the perturbation of a non-self-adjoint PT symmetric Hamiltonian:

H �= H ∗, HPT = PT H.

This extension of perturbation theory will be shown to have non-trivial aspects even when
one restricts oneself to unperturbed discrete simple levels with real energies. Our aim is to
provide a consistent and self-contained framework where well-established results and new
developments can be discussed coherently. The main original aspects that we present are

1. extension of perturbation theory for PT symmetric Hamiltonians in order to prove the
reality of the spectrum of a class ofPT symmetric operators perturbed by aPT symmetric
interaction;

2. the interaction does not need to be bounded relative to the unperturbed Hamiltonian;
3. the results concerning the reality of the eigenvalues are achieved by using the stability

theory developed by Hunziker and Vock (HV-stability theory) in [6].

The paper is organized as follows. In section 2 we give a general presentation of perturbation
theory for non-self-adjoint PT symmetric operators and a review of the stability theory
for eigenvalues. In section 3 we give the technical results leaving the proof to section 4.
Some open problems and further perspectives are outlined in section 5.
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2. General formalism in perturbation theory and review of results

An operator is called PT symmetric if it is invariant under the combined action of a reflection
operator P and the antilinear complex conjugation operator T . One basic issue is to prove the
reality of the spectrum. Results in this direction have been obtained in [7, 8] by means of ODE
techniques, and they have been recently extended in [3–5] (see also [9] for a brief review)
in the framework of perturbation theory by perturbing self-adjoint Hamiltonians. The main
goal of this paper is to extend part of these results to the case of PT symmetric Hamiltonians
obtained by perturbing a PT symmetric operator, not necessarily self-adjoint. Thus, for the
convenience of the reader, we first recall the results of [3–5], concerning the PT symmetric
operators in a Hilbert space (H, 〈u, v〉) of the form

Hg = H0 + igW, g ∈ R,

where H0 is self-adjoint, with domain D ⊂ H, and W is a symmetric operator, relatively
bounded with respect to H0. Moreover there exists a unitary involution P : H → H and an
antilinear involution T : H → H, both mapping D to D, such that

H0P = PH0, PW = −WP, T H0 = H0T , T W = WT . (2.1)

Then Hg is PT symmetric, i.e. PT Hg = HgPT , for g ∈ R. An example is provided by
the PT symmetric Schrödinger operators in L2(Rd), d � 1, where H0 is the self-adjoint
realization of −� + V, T is the complex conjugation, i.e. (T ψ)(x) = ψ(x), and P is the
parity operation defined by

(Pψ)(x) = ψ((−1)j1x1, . . . , (−1)jd xd), ψ ∈ L2(Rd), (2.2)

where jk = 0, 1, and jk = 1 for at least one 1 � k � d. Here −� denotes the d-dimensional
Laplace operator; V and W are real-valued functions, P-even and P-odd respectively:
PV = V,PW = −W . The following theorem, proved in [3, 4], provides a result in the
case of bounded perturbation.

Theorem 2.1. Let H0 be a self-adjoint operator in H and W a symmetric operator in H,
satisfying the above assumption (2.1). Assume further that H0 is bounded below, W is bounded
and that the spectrum of H0 is discrete. Let σ(H0) = {Ej : j = 0, 1, . . .} denote the increasing
sequence of distinct eigenvalues of H0. Finally, let δ := infj�0[Ej+1 −Ej ]/2 and assume that
δ > 0. Then the following results hold:

(i) if for each degenerate eigenvalue of H0 the corresponding eigenvectors have the
same P-parity, i.e. they are either all P-even or all P-odd, then σ(Hg) ⊂ R, if
g ∈ R, |g| < δ/‖W‖;

(ii) if H0 has an eigenvalue E with multiplicity 2 whose corresponding eigenvectors have
opposite P-parity, i.e. one is P-even and the other one is P-odd, then Hg has a pair of
non-real complex conjugate eigenvalues near E for |g| small, g ∈ R.

The proof of the reality of the spectrum under suitable conditions has been extended to
the case of relatively bounded perturbation in [5] and the result is recalled in the following
theorem.

Theorem 2.2. Let

Hg = − d2

dx2
+ V (x) + igW(x) in L2(R),

where V (x) is a real-valued even polynomial of degree 2l, with lim|x|→∞ V (x) = +∞ and
W(x) is a real-valued odd polynomial of degree 2r − 1, with l > 2r . Then there exists g0 > 0
such that σ(Hg) ⊂ R for |g| < g0.
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Remark 2.3. The above theorems enlarge the class of PT symmetric Hamiltonians with real
spectrum provided in [7, 8].

The question that we want to address in this paper is the following. Let now H0 be
PT symmetric (not necessarily self-adjoint) with real spectrum and let W be PT symmetric
as well. We will provide conditions on H0 and W in order to guarantee that the perturbed
eigenvalues of H(ε) := H0 + εW, ε real, are real for |ε| small. Therefore we shall not
prove that the whole spectrum of H(ε) is real, but that at least the eigenvalues generated by
the unperturbed real ones stay real. First of all note that if H0 has degenerate eigenvalues
there may be problems even in the self-adjoint case, as stated in theorem 2.1(ii). In general
we have

mg(λ) � ma(λ), (2.3)

where

mg(λ) = dim{u : (H0 − λ)u = 0} (2.4)

is the geometric multiplicity of λ ∈ C and

ma(λ) = dim{u : (H0 − λ)nu = 0, for some n ∈ N} (2.5)

is the algebraic multiplicity of λ. Note that in the finite-dimensional case (i.e. H0 and W are
matrices) ma(λ) is the multiplicity of λ as a root of the characteristic polynomial of H0. If H0

is self-adjoint, then mg(λ) = ma(λ), for all λ ∈ C. However, in the general (non-self-adjoint)
PT symmetric case it is not enough to assume that mg(λ) = 1 in order to guarantee that the
eigenvalues are simple, i.e. that there is no degeneracy, i.e. that ma(λ) = 1. In fact there may
be ‘exceptional points’, caused by the presence of Jordan blocks.

Example 2.4. Set

H0 =
(

1 i
i −1

)
, P =

(
1 0
0 −1

)
(2.6)

and let T be the complex conjugation. Then H0 isPT symmetric. Its characteristic polynomial
det(H0 − λI) = λ2 has just one root λ0 = 0 with mg(λ0) = 1 and ma(λ0) = 2. If we take

W =
(

0 i
i 0

)

as a perturbation, then H(ε) = H0 + εW has a pair of non-real complex conjugate eigenvalues
λ(ε) = ±i

√
ε(ε + 2) for ε > 0.

To avoid such difficulties we analyse here only the non-degenerate case, i.e. we assume
that

ma(λ) = 1 (2.7)

for all eigenvalues λ of H0. The Hamiltonians H0 that we perturb are one-dimensional PT
symmetric Schrödinger operators with real simple spectrum, for example the Hamiltonians
Hg provided by theorems 2.1 and 2.2 for |g| small.

Remark 2.5. Perturbation theory for matrices in the non-degenerate case provides a
straightforward result because of the following.

(1) The stability of the unperturbed eigenvalues (see definition 2.6) is guaranteed by the
boundedness of the perturbation W (any matrix W is a bounded operator). This implies
that near any unperturbed eigenvalue λ of H0 there is one and only one eigenvalue λ(ε)

of H(ε) for |ε| small and limε→0 λ(ε) = λ. Thus ma(λ(ε)) = 1.
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(2) The eigenvalues of PT symmetric operators come in pairs of complex conjugates, i.e. if
λ(ε) is an eigenvalue of H(ε), then λ(ε) is an eigenvalue of H(ε) too.

Therefore, combining (1) and (2), λ(ε) ∈ R.

We will provide new results on the reality of the perturbed eigenvalues (λ(ε)) in the case
of unbounded (not necessarily relatively bounded) perturbation. As observed in remark 2.5,
a crucial issue is the stability of the unperturbed eigenvalues, i.e. the problem is reduced to
a stability result for the eigenvalues of H0. Such a result is immediate if the perturbation W

is bounded relative to H0 (see e.g. [10, 11]). Indeed, in this case the Rayleigh–Schrödinger
perturbation expansion (RSPE) is convergent, for |ε| small, to the (real) perturbed eigenvalues.
However, there can be stability even if the RSPE does not exist. We provide here a brief
reminder on stability (see [10] and [6]).

Definition 2.6. A discrete eigenvalue λ of H0 is stable with respect to (w.r.t.) the family
H(ε) = H0 + εW if

(i) for any small r > 0,

�r = {z: |z − λ| = r} ⊂ ρ(H(ε)), as ε → 0,

where ρ(H(ε)) := C − σ(H(ε)) is the resolvent set of H(ε);
(ii) limε→0 ‖P(ε) − P(0)‖ = 0 where

P(ε) = (2π i)−1
∮

�r

(z − H(ε))−1 dz

is the spectral projection of H(ε) corresponding to the part of the spectrum enclosed in
�r , and H(0) := H0.

Since (ii) implies that

dim P(ε) = dim P(0)(= ma(λ)) (2.8)

for |ε| small, λ is the limit of a group of perturbed eigenvalues with the same total algebraic
multiplicity (see [10]). If W is bounded relative to H0 there exist a, b > 0 such that

‖Wu‖ � b‖H0u‖ + a‖u‖, ∀u ∈ D(H0). (2.9)

Then

‖(z0 − H(ε))−1 − (z0 − H0)
−1‖ → 0, as ε → 0, (2.10)

for some z0 /∈ σ(H0) and this implies (ii).

Remark 2.7. Eigenvalues may be stable even if (2.10) fails. As an example let
H(ε) = p2 + x2 + εx4, ε > 0, in H = L2(R) be the Hamiltonian of an even anharmonic
oscillator. Here p2 = −d2/dx2. Then the eigenvalues of the harmonic oscillator H(0) are
stable w.r.t. H(ε), ε � 0, in spite of the fact that (2.10) fails and the RSPE is divergent. In
other words, the continuity of the eigenvalues at ε = 0 holds although analyticity fails. In this
case we have only strong resolvent convergence, i.e.

lim
ε→0

(z0 − H(ε))−1u = (z0 − H(0))−1u, ∀u ∈ H, (2.11)

for some z0 /∈ σ(H(0)). Then (2.11) yields the strong convergence of the projections P(ε),
i.e.

lim
ε→0

P(ε)u = P(0)u, ∀u ∈ H, (2.12)
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which implies

dim P(ε) � dim P(0), as ε → 0. (2.13)

So H(ε) may have more eigenvalues than H(0) in the circle �r . This happens for instance for
the double-well operator

H(ε) = p2 + x2(1 − εx)2, in L2(R). (2.14)

In fact near any eigenvalue of the harmonic oscillator H(0) there are two eigenvalues of H(ε)

for |ε| small.

3. Statement of the results

Let H(ε) = p2 + V + εW, ε � 0, denote the closed operator in L2(R) with C∞
0 (R) as a core,

defined by

H(ε)u = −u′′ + V u + εWu, ∀u ∈ D(H(ε)), (3.1)

where V = V+ + iV−,W = W+ + iW− and V+, V−,W+,W− are real-valued functions in
L∞

loc(R). Moreover, V+,W+ are P-even and bounded below, and V−,W− are P-odd and

lim
|x|→∞
ε→0

|V (x) + εW(x)| = +∞. (3.2)

Here (Pu)(x) = u(−x),∀u ∈ L2(R). Let us further assume that the spectrum of H(ε),
denoted σ(H(ε)), is discrete for ε ∈ [0, ε0], i.e. it consists of a sequence of isolated eigenvalues
with finite algebraic multiplicity:

σ(H(ε)) = {Ej(ε) : j = 0, 1, . . .}. (3.3)

For the unperturbed eigenvalues (Ej (0)) we will adopt the simplified notation Ej :=
Ej(0), j = 0, 1, . . .

Theorem 3.1. Under the above assumptions the following statements hold:

(1) each eigenvalue Ej of H(0) is stable w.r.t. the family H(ε), ε > 0. In particular, if Ej is
simple, i.e. ma(Ej ) = 1, and real there exists εj > 0 such that for 0 < ε < εj ,H(ε) has
exactly one eigenvalue Ej(ε) close to Ej :

lim
ε→0

Ej(ε) = Ej

and Ej(ε) is real;
(2) there are no ‘dying eigenvalues’, i.e. if E(ε) ∈ σ(H(ε)) and limε→0 E(ε) = E, then E is

an eigenvalue of H(0).

In the following examples all the above conditions are satisfied. Moreover, the eigenvalues
of H(0) are real and simple.

Example 3.2. The unperturbed Hamiltonian H(0) can be any of the operators Hg satisfying
theorems 2.1 and 2.2, for instance H(0) = p2 + x2n + ig sin x,H(0) = p2 + x2n + igx/

(x2 + 1),H(0) = p2 + x2l + igx2q−1, with |g| small, n, l, q ∈ N and l > 2q. Another example
is provided by H(0) = p2 + ix2k+1, k ∈ N. In all these cases the perturbation W can be taken
in the form W = W+ + iW− where W+ = exp (x2), or W+ is an even polynomial function
diverging positively at infinity, and W− is an odd polynomial function bounded relative to W+.
If H(0) = p2 + ix2k+1, k ∈ N, the polynomial W− must diverge positively at +∞ in order to
guarantee that condition (3.2) is satisfied.
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Corollary 3.3. Assume that the eigenvalues Ej , j ∈ N, of H(0) are all simple and real. Then
all the perturbed eigenvalues Ej(ε), 0 < ε < εj , of H(ε) are real and simple. Moreover
(non-real) complex eigenvalues of H(ε) cannot accumulate at finite points but only at infinity.

Remark 3.4.

1. The question of the reality of the whole spectrum of H(ε) is still open, because there may
be (possibly complex) eigenvalues of H(ε) diverging to infinity as ε → 0.

2. Hamiltonians satisfying corollary 3.3 are provided in example 3.2.

If the perturbation W is bounded relative to H(0), then the RSPE near any Ej converges.
We have therefore the following.

Corollary 3.5. If the unperturbed eigenvalues Ej are simple and real and W is bounded
relative to H(0), then the RSPE near Ej is real for all j = 0, 1, . . . . More precisely, for
0 < ε < εj

Ej (ε) =
∞∑

n=0

anε
n, a0 = Ej (3.4)

and an ∈ R,∀n ∈ N.

Remark 3.6. If W is not relatively bounded w.r.t. H(0), the RSPE although divergent can be
Borel summable to Ej(ε). In this case the coefficients of the RSPE are real. This happens for
instance for the Hamiltonians H(0) and the perturbations W of polynomial type described in
example 3.2.

Remark 3.7. The stability theory developed in [6] allows one to prove a result similar to that
stated in theorem 3.1 also in the presence of an essential spectrum provided that

dist(Ej , σess(H(ε))) � c > 0, as ε → 0. (3.5)

where σess(H(ε)) is the complement in σ(H(ε)) of the discrete spectrum of H(ε).

4. Proof of theorem 3.1

Although it is a straightforward application of the HV-stability theory developed in [6], for a
pedagogical purpose and for the convenience of the reader we describe here the main steps.
The only ‘continuity condition’ required by the HV-theory and guaranteed by the assumptions
of the theorem is

lim
ε→0

H(ε)u = H(0)u, ∀u ∈ C∞
0 (R). (4.1)

Condition (4.1) implies the strong convergence of the resolvents (2.11) which yields (2.13)
and is not enough, as already remarked, to ensure stability. One key ingredient is the numerical
range of H(ε):

N(ε) := {〈u,H(ε)u〉 : u ∈ D(H(ε)), ‖u‖ = 1}, (4.2)

which contains the eigenvalues of H(ε) and in the present case is contained in the right
half-plane:

σ(H(ε)) ⊂ N(ε) ⊂ R+ := {z : Re z � 0}. (4.3)

Next we need to introduce the set of uniform boundedness of the resolvents:

D := {z : (z − H(ε))−1 exists and is uniformly bounded as ε → 0}.
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The sets D and N(ε) are closely related to each other (see e.g. [10]), since C − N(ε) ⊂ D. In
particular for z ∈ R− := {z : Re z < 0}, we have

‖(z − H(ε))−1‖ � dist(z,N(ε))−1 � |Re z|−1, ∀ε > 0. (4.4)

Thus z ∈ D. The HV-theory allows us to prove that D is much wider than R−. Indeed we can
prove that the following alternative holds:

(1′) if E ∈ σ(H(0)) then E is stable w.r.t. H(ε), ε > 0;
(2′) if E /∈ σ(H(0)) then E ∈ D.

Thus, D coincides with the complement of the spectrum of H(0). Note that (2′) implies
statement (2) of the theorem. Moreover, a first step in the proof of (1′) consists in showing
that the circle �r is contained in D, and this guarantees the possibility of constructing the
projection P(ε) for all ε sufficiently small (see definition 2.6). Finally, a third key ingredient,
on which the proofs of both (1′) and (2′) are based, is represented by the so-called characteristic
sequences of (z − H(ε)) or ‘Weyl-type sequences’, i.e. sequences (εn, un) such that

εn → 0, un ∈ D(H(εn)), ‖un‖ = 1,

un
w→ 0, ‖(z − H(εn))un‖ → 0.

(4.5)

Now it is easy to check that for a suitable constant a > 0 we have

〈u, p2u〉 � a(Re〈u,H(ε)u〉 + 〈u, u〉), (4.6)

∀u ∈ D(H(ε)),∀ε ∈ [0, ε0]. By making use of (4.6) one can prove that a sequence of type
(4.5) generates another characteristic sequence (εn, vn) which is ‘supported at infinity’, i.e.
such that

vn(x) = 0, for |x| � n, ∀n ∈ N. (4.7)

Since lim|x|→∞ |V (x)| = +∞ by the above assumption (3.2), we first assume that
lim|x|→∞ V+(x) = +∞. Now the idea is to prove (2′), i.e. that σ(H(0)) ∪ D = C, by
contradiction. More precisely, one can show that if z /∈ σ(H(0)) ∪ D, then a characteristic
sequence (εn, vn) of (z−H(ε)) exists and it satisfies both (4.5) and (4.7). But this contradicts
the fact that for all z ∈ C

lim
n→∞
ε→0

dn(z, ε) = +∞ (4.8)

where

dn(z, ε) = inf{‖(z − H(ε)) : u ∈ D(H(ε)), ‖u‖ = 1, u(x) = 0 for |x| � n}. (4.9)

Indeed we have

dn(z, ε) � dist(z,Nn(ε)) (4.10)

where

Nn(ε) = {〈u,H(ε)u〉 : u ∈ D(H(ε)), ‖u‖ = 1, u(x) = 0 for |x| � n} (4.11)

is the so-called numerical range at infinity. Now, for all u ∈ D(H(ε)) such that ‖u‖ = 1 and
u(x) = 0 for |x| � n, we have

|z − 〈u,H(ε)u〉| � |〈u,H(ε)u〉| − |z| � |Re〈u,H(ε)u〉| − |z| � 〈u, V+u〉 − |z| − c

(4.12)

as ε → 0, for some constant c > 0. Thus, (4.8) follows from (4.10) and the fact that
lim|x|→∞ V+(x) = +∞ by assumption. Hence (2′) is proved. Now let E ∈ σ(H(0)). In order
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to prove that E is stable w.r.t. H(ε), ε > 0, we recall that it is enough to prove (2.8), i.e. in
view of (2.13),

dim P(ε) � dim P(0), as ε → 0. (4.13)

Again the proof is by contradiction. In fact if we assume that dim P(εn) > dim P(0), for
εn → 0, a characteristic sequence of (E − H(ε)) which satisfies (4.7) can be found, and
exactly as before this contradicts (4.8). Thus the theorem is proved under the assumption
that lim|x|→∞ V+(x) = +∞. If this assumption is not satisfied, then it follows from (3.2) that
lim|x|→∞

ε→0
|V−(x) + εW−(x)| = +∞. Without loss of generality, since V− and W− are P-odd,

we may assume that limx→+∞
ε→0

(V−(x) + εW−(x)) = +∞ and limx→−∞
ε→0

(V−(x) + εW−(x)) =
−∞. This immediately implies that there exists c � 0 such that

lim
n→∞
ε→0

dn(z, ε) = 0, ∀z ∈ R+, Re z � c

and therefore (4.8) cannot be used to generate a contradiction with (4.5) and (4.7). Nevertheless
the problem is overcome as follows (see also [12] where an analogous problem was handled in
a similar fashion). First of all one can prove that any characteristic sequence (εn, un) generates
another characteristic sequence (εn, vn) which is supported either at +∞ or at −∞, i.e. such
that either

vn(x) = 0, for x � n ∀n ∈ N (4.14)

or

vn(x) = 0, for x � −n ∀n ∈ N. (4.15)

Next we introduce the numerical range at +∞, N+
n (ε), and the numerical range at −∞, N−

n (ε),
defined by (4.11) where the condition u(x) = 0 for |x| � n is replaced by u(x) = 0 for x � n,
and u(x) = 0 for x � −n respectively. More precisely,

N+
n (ε) = {〈u,H(ε)u〉 : u ∈ D(H(ε)), ‖u‖ = 1, u(x) = 0 for x � n}

and

N−
n (ε) = {〈u,H(ε)u〉 : u ∈ D(H(ε)), ‖u‖ = 1, u(x) = 0 for x � −n}.

Then for all z ∈ C we have

lim
n→∞
ε→0

d±
n (z, ε) = +∞ (4.16)

where

d+
n (z, ε) = inf{‖(z − H(ε)) : u ∈ D(H(ε)), ‖u‖ = 1, u(x) = 0 for x � n}. (4.17)

and similarly for d−
n (z, ε). Then the existence of a characteristic sequence satisfying either

(4.14) or (4.15) contradicts (4.16) and this concludes the proof of the theorem.

5. Conclusions

The reality of the spectrum of a PT symmetric Hamiltonian has been proved for a class of
polynomial Hamiltonians and for solvable classes of potentials generated by solvable self-
adjoint problems by a complex coordinate shift. By a suitable use of the perturbation theory
we have summarized in this paper that it is conceivable that the class of PT symmetric
Hamiltonians with real spectrum can be considerably enlarged in so far as one starts from a
PT symmetric Hamiltonian with real spectrum and adds a PT symmetric perturbation. This
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analysis does not pretend to be exhaustive in the sense that the perturbed eigenvalues of H(ε)

are real but there is no guarantee that the whole spectrum is real. Therefore the connection
with pseudo-Hermiticity deserves further investigation. Moreover, the pseudo-Hermiticity
condition H = ηH ∗η−1 (see e.g. [13, 14]) of the unperturbed Hamiltonian could generate
a perturbative approach to pseudo-Hermiticity for larger classes of Hamiltonians and of the
operator η. Another open question is a detailed analysis of the degenerate case, i.e. the case
when the unperturbed eigenvalues are diabolic points [15] or exceptional points [16, 17];
the latter are typical of non-diagonalizable Hamiltonians.
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